
Flog	 :	 Logic	 Programming	 for	
So1ware	 Defined	 Networks	

Naga	 Praveen	 Ka=a,	 	
Jennifer	 Rexford,	 David	 Walker	

Princeton	 University	

TradiFonal	 networks	
•  	 TradiFonal	 network	 elements	 -‐	 special	 purpose	 devices	 running	

distributed	 algorithms.	

Control	 Plane	 –	 Complex	 Distributed	 algorithms	 	

Data	 Plane	 –	 Simple	 packet	 forwarding	 	

Operator:	
-‐	 Monitors	 traffic	 	
-‐	 IdenFfies	 threats	
-‐	 Indirectly	 configures	 	

	 policy	
	

TradiFonal	 networks	
•  	 Managing	 a	 network	 is	 hard	

–  Routers	 with	 millions	 of	 lines	 of	 code	
–  Running	 complex	 distributed	 protocols	
–  Connected	 to	 a	 diverse	 set	 of	 middleboxes	

•  OperaFng	 a	 network	 is	 expensive	
–  More	 than	 half	 the	 cost	 of	 a	 network	
–  Manual	 operator	 errors	 cause	 most	 outages	

•  TradiFonally	 hard	 to	 innovate	
–  Closed	 equipment	 with	 vendor	 specific	 interfaces	
–  Ossified	 evoluFon	
–  Few	 people	 can	 make	 changes	 (say,	 CISCO	 cerFfied)	
	
	

What	 is	 a	 So1ware-‐Defined	 Network?	

Switches!

Smart!
Control!

Dumb,!
fast!

Controller	 Machine	
Arbitrary	 program	 implements	 control	 plane	 funcFonality:	
•  Tracks	 network	 topology	
•  Monitors	 traffic	
•  Installs	 rules	 to	 block	 or	 forward	 traffic.	

Openflow	 Switches	
•  Switch	 packet-‐handling	 rules	 :	 <pa1ern,	 ac3on,	 priority>	 	

–  Pa1ern:	 match	 packet	 header	 bits	
–  Ac3on:	 drop,	 forward,	 modify,	 send	 to	 controller	 	
–  Priority:	 disambiguate	 overlapping	 pa=erns	
–  Counters:	 #bytes	 and	 #packets	

Flow	 Table	

Pa1ern	 Ac3on	 Bytes	 Packets	

01010	 Drop	 200	 10	

010*	 Forward(n)	 100	 3	

011*	 Controller	 0	 0	

priority	

Industry	 Thrust	

•  Everyone has signed on
–  Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche

Telekom
•  New applications

–  Host mobility
–  Server load balancing
–  Network virtualization
–  Dynamic access control
–  Energy-efficiency

•  Real deployments
–  Google’s usage in a Wide Area Network
–  Nicira, acquired by VMWare

So1ware-‐Defined	 Networks	

The	 Good	
•  Simple	 data	 plane	 abstracFon	
•  Logically-‐centralized	 controller	
•  Direct	 control	 over	 switch	 policies	
	

Images	 by	 Billy	 Perkins	

The	 Bad	
• 	 	 Low-‐level	 programming	 interface	
• 	 	 FuncFonality	 Fed	 to	 hardware	
• 	 	 Explicit	 resource	 control	

The Ugly
• 	 	 Non-‐modular,	 non-‐composiFonal	
• 	 	 Programmer	 faced	 with	 challenging	
distributed	 programming	 problem	

Programming abstractions!

Programming	 the	 controller	

Programming	 the	 controller	

Application modules in software!

Stateful	 Firewall	

2 1

Let packets from external hosts in,
only when spoken to"

External world"

Internal
network"

Controller"

Stateful	 Firewall	

2 1

Internal
network"

ip1	

Pa1ern	 Ac3on	 Priority	

Inport(2)	 Fwd(1)	 0	

Allow	

ip1	

Stateful	 Firewall	

2 1

Internal
network"

ip1	

Pa1ern	 Ac3on	 Priority	

Inport(2)	 Fwd(1)	 0	

Allow	

ip1	 ip1	

Stateful	 Firewall	

2 1

Internal
network"

Pa1ern	 Ac3on	 Priority	

Inport(2)	 Fwd(1)	 0	

Allow	

ip1	

ip1	

Srcip(ip1),	 inport(1)	 |>	
fwd(2)	

Stateful	 Firewall	

2 1

Internal
network"

Pa1ern	 Ac3on	 Priority	

Inport(2)	 Fwd(1)	 0	

Srcip(ip1)^
inport(1)	

Fwd(2)	 0	

Allow	

ip1	

ip1	

Stateful	 Firewall	

2 1

Internal
network"

ip1	

Pa1ern	 Ac3on	 Priority	

Inport(2)	 Fwd(1)	 0	

Srcip(ip1)^
inport(1)	

Fwd(2)	 0	

Allow	

ip1	

1.	 Flow	 IdenFficaFon	

•  	 Events	 :	 packet-‐ins,	 switches	 and	 ports	 go	 online/offline.	
•  	 Flow	 idenFficaFon	 rule	

•  Example	 :	 	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

flow(h1=X1,h2=X2,...), constraints --> rel(X1,X2,...)!

flow(srcip=IP, vlan=V), V > 0 --> myvlans(IP,V)!

2.	 Update	 Controller	 State	

•  	 A	 logic	 program	 to	 process	 the	 monitored	 network-‐events	 (base	 facts)	
•  	 Has	 mulFple	 inference	 rules	 for	 deriving	 new	 facts	
•  	 Two	 kinds	 of	 inference	 rules	
	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

fact1, fact2, ... --> factn !
	 	 	 	 	 	 	 <factn	 generated	 and	 added	 to	 current	 database>!

fact1, fact2, ... +-> factn !
	 	 	 	 	 	 	 <factn	 added	 to	 a	 database	 which	 is	 used	 in	 the	 next	 epoch>!

3.	 Specifying	 Policy	

•  	 Generate	 a	 forwarding	 policy	 for	 the	 switches	

•  Gives	 the	 pa=ern,	 acFon	 and	 the	 priority	 for	 the	 switch	 rules	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

 fact(V1, V2 …) -> pattern(V1,V2…)|> action, level(i)!

Stateful	 Firewall	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

What	 is	 Flog?	
•  An	 event-‐driven,	 forward	 chaining	 logic	 programming	 language	
•  Has	 three	 effects	

–  	 Executed	 every	 Fme	 a	 specific	 network	 event	 occurs	 (epoch)	
–  	 Updates	 the	 state	 (tables)	 at	 the	 controller.	
–  	 Generates	 a	 forwarding	 policy	 based	 on	 the	 controller	 state.	

•  	 Why	 logic	 programming?	
–  	 Good	 for	 table-‐driven	 collecFon	 and	 processing	 of	 network	 staFsFcs	
–  	 Inspired	 by	 success	 of	 NDlog,	 Overlog,	 Dedalus,	 Bloom	
–  	 Good	 for	 incremental	 updates	 to	 state.	

•  	 Specialized	 Logic	 Programming	 in	 the	 context	 of	 SDNs	

Simple	 Learning	 Switch	 	

ip1	

ip2	

ip3	

3

2
1

Simple	 Learning	 Switch	 	

ip1	

ip2	

ip3	

3

2
1

*	 |>	 flood	

Learn	

Simple	 Learning	 Switch	 	

ip1	

ip2	

ip3	

3

2
1

ip3	

Learn	

Simple	 Learning	 Switch	 	

ip1	

ip2	

ip3	

3

2
1

ip3	
ip3	

ip3	

Learn	

ip1	

ip2	

ip3	

3

2
1

Simple	 Learning	 Switch	 	

Learn	

(Ip1,	 1)	

DsFp(ip1)	 |>	 fwd(1)	

ip1	

ip2	

ip3	

3

2
1

ip1	

Simple	 Learning	 Switch	 	

Learn	

(Ip1,	 1)	

ip1	

ip2	

ip3	

3

2
1

Simple	 Learning	 Switch	 	

Learn	

(Ip1,	 1)	

(Ip3,	 3)	

Simple	 Learning	 Switch	 	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

Learning	 Switch	 With	 Mobility	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

Related	 Work	
•  	 NOX,	 Beacon	 :	 low-‐level,	 imperaFve,	 event	 driven	
•  	 install,	 uninstall	 forwarding	 rules	 directly	 on	 the	 switch	
•  	 FML	 :	 high-‐level	 language	 for	 SDN	 based	 on	 Datalog	

–  	 Can	 menFon	 the	 kinds	 of	 flows	 to	 be	 allowed/denied.	
–  	 not	 flexible,	 need	 to	 use	 other	 languages	 for	 stateful	 computaFon	

•  FreneFc	 provides	 a	 combinaFon	 of	
–  (1)	 a	 declaraFve	 query	 language	 with	 an	 SQL-‐like	 syntax	 for	 monitoring	

packets	
–  (2)	 a	 funcFonal	 packet	 stream-‐processing	 language,	 and	 	
–  (3)	 a	 specificaFon	 language	 for	 describing	 packet	 forwarding	

•  Flog	 -‐	 Best	 of	 both	 worlds	 from	 FML	 and	 FreneFc	

Conclusion	

FreneFc	 Run-‐Fme	 System	

FreneFc	
Program	

Flog	
Program	

•  Programming	 abstracFons	 for	 So1ware-‐Defined	 Networking	
•  FLOG	 -‐	 Logic	 Programming	 based	 language	 for	 programming	 SDN	

controllers	
•  A	 Flog	 program	 has	 three	 important	 components	

u Network	 events	
u  InformaFon	 processing	
u Policy	 generaFon	

•  Future	 Work	
u Full	 fledged	 compiler/run	 Fme	
u Support	 for	 incremental	 policy	 updates	

	
	

