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TradiFonal	  networks	  
•  	  TradiFonal	  network	  elements	  -‐	  special	  purpose	  devices	  running	  

distributed	  algorithms.	  

Control	  Plane	  –	  Complex	  Distributed	  algorithms	  	  

Data	  Plane	  –	  Simple	  packet	  forwarding	  	  

Operator:	  
-‐	  Monitors	  traffic	  	  
-‐	  IdenFfies	  threats	  
-‐	  Indirectly	  configures	  	  

	  policy	  
	  



TradiFonal	  networks	  
•  	  Managing	  a	  network	  is	  hard	  

–  Routers	  with	  millions	  of	  lines	  of	  code	  
–  Running	  complex	  distributed	  protocols	  
–  Connected	  to	  a	  diverse	  set	  of	  middleboxes	  

•  OperaFng	  a	  network	  is	  expensive	  
–  More	  than	  half	  the	  cost	  of	  a	  network	  
–  Manual	  operator	  errors	  cause	  most	  outages	  

•  TradiFonally	  hard	  to	  innovate	  
–  Closed	  equipment	  with	  vendor	  specific	  interfaces	  
–  Ossified	  evoluFon	  
–  Few	  people	  can	  make	  changes	  (say,	  CISCO	  cerFfied)	  
	  
	  



What	  is	  a	  So1ware-‐Defined	  Network?	  

Switches!

Smart!
Control!

Dumb,!
fast!

Controller	  Machine	  
Arbitrary	  program	  implements	  control	  plane	  funcFonality:	  
•  Tracks	  network	  topology	  
•  Monitors	  traffic	  
•  Installs	  rules	  to	  block	  or	  forward	  traffic.	  



Openflow	  Switches	  
•  Switch	  packet-‐handling	  rules	  :	  <pa1ern,	  ac3on,	  priority>	  	  

–  Pa1ern:	  match	  packet	  header	  bits	  
–  Ac3on:	  drop,	  forward,	  modify,	  send	  to	  controller	  	  
–  Priority:	  disambiguate	  overlapping	  pa=erns	  
–  Counters:	  #bytes	  and	  #packets	  
 

Flow	  Table	  

Pa1ern	   Ac3on	   Bytes	   Packets	  

01010	   Drop	   200	   10	  

010*	   Forward(n)	   100	   3	  

011*	   Controller	   0	   0	  

priority	  



Industry	  Thrust	  

•  Everyone has signed on 
–  Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche 

Telekom 
•  New applications 

–  Host mobility 
–  Server load balancing 
–  Network virtualization 
–  Dynamic access control 
–  Energy-efficiency 

•  Real deployments 
–  Google’s usage in a Wide Area Network 
–  Nicira, acquired by VMWare 



So1ware-‐Defined	  Networks	  

The	  Good	  
•  Simple	  data	  plane	  abstracFon	  
•  Logically-‐centralized	  controller	  
•  Direct	  control	  over	  switch	  policies	  
	  

Images	  by	  Billy	  Perkins	  

The	  Bad	  
• 	  	  Low-‐level	  programming	  interface	  
• 	  	  FuncFonality	  Fed	  to	  hardware	  
• 	  	  Explicit	  resource	  control	  

The Ugly 
• 	  	  Non-‐modular,	  non-‐composiFonal	  
• 	  	  Programmer	  faced	  with	  challenging	  
distributed	  programming	  problem	  



Programming abstractions!

Programming	  the	  controller	  



Programming	  the	  controller	  

Application modules in software!



Stateful	  Firewall	  

2 1 

Let packets from external hosts in, 
only when spoken to"

External world"

Internal 
network"

Controller"
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1.	  Flow	  IdenFficaFon	  

•  	  Events	  :	  packet-‐ins,	  switches	  and	  ports	  go	  online/offline.	  
•  	  Flow	  idenFficaFon	  rule	  

•  Example	  :	  	  

 

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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flow(h1=X1,h2=X2,...), constraints --> rel(X1,X2,...)!

flow(srcip=IP, vlan=V), V > 0 --> myvlans(IP,V)!



2.	  Update	  Controller	  State	  

•  	  A	  logic	  program	  to	  process	  the	  monitored	  network-‐events	  (base	  facts)	  
•  	  Has	  mulFple	  inference	  rules	  for	  deriving	  new	  facts	  
•  	  Two	  kinds	  of	  inference	  rules	  
	  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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fact1, fact2, ... --> factn !
	  	  	  	  	  	   	  <factn	  generated	  and	  added	  to	  current	  database>!

fact1, fact2, ...  +-> factn !
	  	  	  	  	  	   	  <factn	  added	  to	  a	  database	  which	  is	  used	  in	  the	  next	  epoch>!



3.	  Specifying	  Policy	  

•  	  Generate	  a	  forwarding	  policy	  for	  the	  switches	  

•  Gives	  the	  pa=ern,	  acFon	  and	  the	  priority	  for	  the	  switch	  rules	  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility
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# Information Processing
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seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).
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 fact(V1, V2 …) -> pattern(V1,V2…)|> action, level(i)!



Stateful	  Firewall	  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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What	  is	  Flog?	  
•  An	  event-‐driven,	  forward	  chaining	  logic	  programming	  language	  
•  Has	  three	  effects	  

–  	  Executed	  every	  Fme	  a	  specific	  network	  event	  occurs	  (epoch)	  
–  	  Updates	  the	  state	  (tables)	  at	  the	  controller.	  
–  	  Generates	  a	  forwarding	  policy	  based	  on	  the	  controller	  state.	  

•  	  Why	  logic	  programming?	  
–  	  Good	  for	  table-‐driven	  collecFon	  and	  processing	  of	  network	  staFsFcs	  
–  	  Inspired	  by	  success	  of	  NDlog,	  Overlog,	  Dedalus,	  Bloom	  
–  	  Good	  for	  incremental	  updates	  to	  state.	  

•  	  Specialized	  Logic	  Programming	  in	  the	  context	  of	  SDNs	  



Simple	  Learning	  Switch	  	  

ip1	  

ip2	  

ip3	  

3 

2 
1 



Simple	  Learning	  Switch	  	  

ip1	  

ip2	  

ip3	  

3 

2 
1 

*	  |>	  flood	  

Learn	  



Simple	  Learning	  Switch	  	  

ip1	  

ip2	  

ip3	  

3 

2 
1 

ip3	  

Learn	  



Simple	  Learning	  Switch	  	  

ip1	  

ip2	  

ip3	  

3 

2 
1 

ip3	  
ip3	  

ip3	  

Learn	  



ip1	  

ip2	  

ip3	  

3 

2 
1 

Simple	  Learning	  Switch	  	  

Learn	  

(Ip1,	  1)	  

DsFp(ip1)	  |>	  fwd(1)	  



ip1	  

ip2	  

ip3	  

3 

2 
1 

ip1	  

Simple	  Learning	  Switch	  	  

Learn	  

(Ip1,	  1)	  



ip1	  

ip2	  

ip3	  

3 

2 
1 

Simple	  Learning	  Switch	  	  

Learn	  

(Ip1,	  1)	  

(Ip3,	  3)	  



Simple	  Learning	  Switch	  	  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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Learning	  Switch	  With	  Mobility	  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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Related	  Work	  
•  	  NOX,	  Beacon	  :	  low-‐level,	  imperaFve,	  event	  driven	  
•  	  install,	  uninstall	  forwarding	  rules	  directly	  on	  the	  switch	  
•  	  FML	  :	  high-‐level	  language	  for	  SDN	  based	  on	  Datalog	  

–  	  Can	  menFon	  the	  kinds	  of	  flows	  to	  be	  allowed/denied.	  
–  	  not	  flexible,	  need	  to	  use	  other	  languages	  for	  stateful	  computaFon	  

•  FreneFc	  provides	  a	  combinaFon	  of	  
–  (1)	  a	  declaraFve	  query	  language	  with	  an	  SQL-‐like	  syntax	  for	  monitoring	  

packets	  
–  (2)	  a	  funcFonal	  packet	  stream-‐processing	  language,	  and	  	  
–  (3)	  a	  specificaFon	  language	  for	  describing	  packet	  forwarding	  

•  Flog	  -‐	  Best	  of	  both	  worlds	  from	  FML	  and	  FreneFc	  



Conclusion	  

FreneFc	  Run-‐Fme	  System	  

FreneFc	  
Program	  

Flog	  
Program	  

•  Programming	  abstracFons	  for	  So1ware-‐Defined	  Networking	  
•  FLOG	  -‐	  Logic	  Programming	  based	  language	  for	  programming	  SDN	  

controllers	  
•  A	  Flog	  program	  has	  three	  important	  components	  

u Network	  events	  
u  InformaFon	  processing	  
u Policy	  generaFon	  

•  Future	  Work	  
u Full	  fledged	  compiler/run	  Fme	  
u Support	  for	  incremental	  policy	  updates	  

	  
	  


